
The phenomenon of learning is central to humans and 
animals, and as such it is the focus of an intense scien­
tific investigation. However, due to the complex nature of 
learning, the areas of research on learning are multiple, 
with little crosslinking between these areas, even in the 
more restricted domain of behavioral and system neuro­
science. The goal of the present review is to highlight 
some recent empirical and theoretical developments in 
both human and animal learning that suggest a possibly 
more general framework within which learning could be 
interpreted and investigated successfully. The more gen­
eral framework is grounded in a statistical reformulation 
of different learning theories; more specifically, express­
ing learning as an implicit Bayesian inference carried out 
by humans and animals.

The structure of the article is as follows. First, I describe 
the classical definition of human perceptual learning and 
the way this classical paradigm could be modified a rep­
resentational learning paradigm, to examine how humans 
acquire new complex representations of their environ­
ment. Next, I explain a number of results in human learn­
ing within this representational learning paradigm, and I 
show how these results are naturally explained within a 
Bayesian framework. In the last part of the article, I shift 
gears and argue that classical conditioning in animals is 
a sort of perceptual learning and can be reformulated in 
a representational learning paradigm, in much the same 
way as classical perceptual learning in humans can be. I 
present the results of studies that reformulated represen­

tational paradigm of classical conditioning in a Bayesian 
framework and thus afforded better insight into the under­
lying computation than did classical models. In the con­
cluding part of the article, I highlight parallels between 
the two approaches and propose how representational 
learning might shed new light on the computational nature 
of a large class of learning phenomena.

Classical perceptual learning  
in humans

Perceptual learning has traditionally been defined 
as a practice-induced improvement in humans’ ability 
to perform specific perceptual tasks (Fahle & Poggio, 
2002). In perceptual learning paradigms, the subject is 
presented with a well-defined task explained verbally 
by the experimenter—orientation discrimination, for ex­
ample (Fiorentini & Berardi, 1980; Furmanski & Engel, 
2000; Petrov, Dosher, & Lu, 2006), texture discrimination 
(Ahissar & Hochstein, 1997; Karni & Sagi, 1991), mo­
tion direction discrimination (Matthews, Liu, Geesaman, 
& Qian, 1999), or a hyperacuity test (Poggio, Fahle, & 
Edelman, 1992). After repetitive training (typically in­
cluding feedback), the subject’s performance improves as 
quantified by threshold or reaction time measures. This 
experimental paradigm has been explored extensively in 
both the psychophysical (Dosher & Lu, 1998; Furmanski 
& Engel, 2000; Gold, Bennett, & Sekuler, 1999) and the 
neurophysiological domains (Gilbert, Sigman, & Crist, 
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from a large set of potential descriptions, during classi­
cal perceptual learning subjects improve their threshold 
of discrimination between well-specified simple patterns, 
which can be done by increasing the sensitivity of existing 
detectors. Second, whereas representational learning is 
largely detached from conscious access, the attribute to be 
learned during classical perceptual learning is prespeci­
fied in the task description, and, therefore, the learning 
process is much more influenced by cognitively controlled 
processes (but see Watanabe, Náñez, & Sasaki, 2001, and 
in this issue).

There are three aspects of classical perceptual learning 
that need to be altered for a new framework, termed the 
observational learning paradigm, to make it suitable for 
investigating how humans acquire new internal represen­
tations. First, although the overall goal of observational 
learning is to encode useful aspects of the low-level sen­
sory input for further processing, as in the case of classical 
perceptual learning, the fundamental computational task is 
not that Gaussian noise obscures some of the elements of 
the input and hence prevents the correct perception of the 
input that could lead to learning of some useful underlying 
associations; rather, sensory input there is fairly clear but 
ambiguous. It can support far too many possible combi­
nations of elements that all could be potentially relevant 
higher order features. This is a combinatorial problem 
and not a signal-processing problem that lies at the heart 
of classic perceptual learning studies; the new paradigm 
should therefore be suitable for testing this combinatorial 
aspect of the learning problem in a controllable way.

Second, as was mentioned above, traditional perceptual 
learning tasks use explicit feedback (although it is not al­
ways related to the specific attribute learned; cf. Seitz & 
Watanabe, 2003), so they test how humans acquire new in­
formation in a supervised situation, whereas the principal 
challenge of developing new representations is to provide 
an unsupervised method of learning. Supervised learn­
ing is a much simpler task than unsupervised, in the sense 
that there is a single well-defined objective function and, 
in each trial, very detailed error information is provided 
to retune the system. In contrast, the only objective func­
tion in unsupervised learning is to capture the structure 
of the input. Even though it is clear that humans perform 
both unsupervised and supervised learning, and that there 
is a strong interaction between the two, the fundamental 
level of this process (translating light information into 
meaningful visual interpretations) is better characterized 
by unsupervised learning. Although many processes of 
human knowledge acquisition are goal directed and also 
rely on explicit external error measures, the first step to­
ward these more cognitive types of memory formations is 
a dimension-reducing unsupervised learning process. This 
process, based on the external structure of the visual world, 
is intended to develop a representation that supports higher 
level learning; it proceeds without a bias imposed by an ex­
plicit task. To investigate this process, we need an experi­
mental learning paradigm that is inherently unsupervised.

The third aspect is related to the stimuli used in percep­
tual learning tasks. Since these studies focus on the gen­
eral mechanisms of visual learning, the stimuli need to be 

2001; Schoups, Vogels, Qian, & Orbán, 2001), and it is 
considered the dominant experimental approach to human 
sensory learning that does not strictly deal with abstract 
cognitive tasks such as concept learning (Fahle & Poggio, 
2002; Fine & Jacobs, 2002).

Despite this widespread view, the classical paradigm 
captures only one type of change occurring in the brain 
due to controlled and limited sensory experience during 
fine discrimination tasks (Goldstone, 1998). However, 
learning is a much more complex phenomenon (Gallis­
tel, 1990), and if the focus of the investigation is on un­
derstanding how humans and animals adaptively react to 
their complex surroundings in the most efficient way, a 
different aspect of human learning becomes important. In 
the visual modality, this concerns how infants learn their 
visual environment, the existence of objects and their in­
teractions in scenes (Kellman & Arterberry, 1998), and 
the process by which adults acquire new visual knowl­
edge of visual inputs never before seen (Kemp & Tenen­
baum, 2008). Although this type of learning is based on 
perceived sensory input, and thus can be called perceptual 
learning, clearly it focuses on a different aspect of learn­
ing than traditional perceptual learning studies do. The 
present review will focus on such learning in the visual 
domain, but I suggest that the conclusions will generalize 
to such learning based on any modality.

In vision, the question of how to learn to understand 
our environment can be restated as how humans and ani­
mals extract novel visual descriptions, features, or chunks 
from their visual environment and represent them so that 
they can later use them for the purposes of effective vi­
sual recognition and recognition-based action. I suggest 
that there are a number of essential characteristics of this 
process that set it apart from the tasks typically used in 
traditional studies of perceptual learning. First, it is im­
plicit or unsupervised, in that there is no explicit exter­
nal direction as to what should or should not be retained 
from the visual input. Second, it works on an extremely 
complex, hierarchically structured, spatiotemporal input, 
where not only do many embedded substructures compose 
the scene, but many of them participate in multiple con­
texts at different times. This requires a very sophisticated 
representation, by contrast to the very simple stimuli used 
in traditional perceptual learning studies. Third, the inter­
actions between objects in the outside world can alter the 
appearance of these structures substantially; for success­
ful application, their description must, therefore, provide 
a large degree of generalization. Fourth, since a simple 
brute-force approach of learning all the possible features 
cannot cope with the complexity of real visual inputs 
due to the explosive combinatorics of the problem, the 
proposed learning mechanism must be computationally 
powerful enough to solve the task and meanwhile remain 
biologically plausible.

These features of the problem show that the classically 
defined paradigm of visual perceptual learning is not very 
appropriate, for two reasons, to investigating how humans 
develop complex visual representations in the natural 
environment. First, whereas the task in representational 
learning is to automatically extract new descriptions 
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statistical learning) or a chunking mechanism that finds 
small typical fragments of the input (by chunk learning) 
to account for all the rule-learning results of implicit 
learning experiments.

Statistical learning is a special version of implicit learn­
ing that, rather than invoking symbolic rules, focuses on 
humans’ ability to learn the simple statistical structures 
of the input. Statistical learning was first also introduced 
in the domain of language acquisition (Saffran, Aslin, 
& Newport, 1996; Saffran, Newport, Aslin, Tunick, & 
Baruecco, 1997). These studies showed that mere expo­
sure to a continuous sequence of auditory syllables, visual 
shapes, or full visual scenes is sufficient for adults and 
infants to extract regularities from the input. Specifically, 
in the Saffran et al. studies, subjects incidentally learned 
the transitional probabilities between syllables presented 
in a continuous uninterrupted auditory stream generated 
by a certain rule; that is, they automatically learned which 
syllable was most likely to follow a given syllable. Statis­
tical learning has been extended to the domain of touch 
(Conway & Christiansen, 2006; Hunt & Aslin, 2001) and 
even to other species (Hauser, Newport, & Aslin, 2001), 
suggesting that it is a very general domain-independent 
behavioral phenomenon. Since statistical learning is un­
supervised and implicit, it is uniquely adequate for ob­
servational learning, in both adults and infants. Indeed, 
this is the paradigm that we used in the modality of vision 
to make it suitable for studying human representational 
learning in both adults and infants (Fiser & Aslin, 2001, 
2002a, 2002b, 2005).

Briefly, we used arbitrary configurations of complex, 
highly discriminable novel shapes as the elements, and 
generated visual scenes by combining a subset of these 
shapes in each scene, according to some statistical rules. 
The general properties of statistical learning could be 
investigated just as well by using these complex shapes 
as by using Gabor patches or other simple stimuli, but 
without interference from perceptual mechanisms already 
in place. Moreover, by randomly assigning shapes across 
subjects, we could eliminate any specific effect of percep­
tual mechanisms already in place for the perception of the 
shape elements that would be based on peculiar low-level 
feature co-occurrences, and thus we could very precisely 
control the relevant statistics for learning. The paradigm is 
completely unsupervised and implicit, and it tests humans’ 
ability to extract higher order statistical regularities from 
unknown inputs. Although these experiments used com­
positions of simple black shapes as stimuli, they clarified 
the computational basis of human feature learning, and 
thus opened the road for nonclassical perceptual learning 
experiments with more realistic stimuli that can directly 
target the issue of humans’ internal visual representation 
of the external world and how it develops.

Features of visual 
representational learning

The following results demonstrate not only the advan­
tages of the proposed learning paradigm, but also how 
these investigations can be tied to computational models 

designed so as not to contaminate learning through some 
uncontrolled specific features. Simple visual stimuli can 
form intermediate-level features by recourse to already 
existing lower level “grouping principles,” and the internal 
representation on the basis of which learning occurs thus 
becomes inaccessible to the experimenter. For example, 
although classical perceptual learning has been studied 
for decades, it is still not known what exactly is learned 
when the subject can perform the orientation discrimina­
tion task better. Paradoxically, to have total control over all 
statistical features of the stimulus that the subject can uti­
lize for learning is not always accomplished by using the 
simplest stimuli. Even though displays with a number of 
localized Gabor patches would be the type of fundamental 
stimuli traditionally used in the visual psychophysics of 
perceptual learning, they are very similar, and this causes a 
problem. When only a few Gabor patches are used in each 
display, the visual input is too simple to provide the nec­
essary environment for studying statistical learning. Con­
versely, when more than a few Gabor patches are shown 
in the display, the visual system immediately invokes a 
number of previously developed midlevel representations 
based on configural or grouping mechanisms. For exam­
ple, a cluster of semicontinuously oriented Gabor patches 
will “pop out” of a background array of randomly ori­
ented Gabor patches (Kovacs, Kozma, Fehér, & Benedek, 
1999). Thus, the statistical learning mechanism will work 
on these intermediate representations rather than on the 
structures controlled explicitly by the experimenter. The 
modified observational learning paradigm needs to avoid 
this pitfall and work with stimuli whose relevant statistical 
features are completely controlled.

From perceptual learning to 
representational learning

What new learning paradigm could be developed to 
handle the challenges listed in the preceding section? The 
most fitting existing paradigm for observational learn­
ing is implicit learning—more specifically, statistical 
learning. Implicit learning is the ability to learn without 
awareness and has been explored mostly in language ac­
quisition and skill learning research (Stadler & Frensch, 
1997). Although implicit learning is thought to be inci­
dental but robust, there is no agreement in the field re­
garding the extent to which it produces abstract complex 
knowledge (Cleeremans, Destrebecqz, & Boyer, 1998). 
Since early implicit learning studies were conducted in 
the domain of language acquisition, “abstract complex 
knowledge” has been defined initially as “knowing the 
grammar” that produces a set of observed strings (Reber, 
1967). In implicit learning studies conducted in other 
domains, this concept of abstraction was generalized to 
mean “knowing the rules” that produced the observed 
inputs (Lewicki, Hill, & Bizot, 1988). However, recent 
studies have proposed that using a grammar or a rule ef­
ficiently might not even require explicit knowledge of the 
rules themselves (Perruchet & Pacton, 2006). It might be 
sufficient to use a simple associative learning mechanism 
that can trace distributional properties of the input (by 
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shape combination was taken as evidence that the subject 
had extracted (unconsciously and automatically) the un­
derlying structure of the scenes.

Using this experimental design, we ran a large number 
of visual statistical learning experiments in the last couple 
of years. The goal of the first set of experiments was to es­
tablish whether humans are sensitive to second-order joint 
and conditional visual statistics in the spatial and temporal 
domains, and, if so, how universal this sensitivity is across 
adults and infants. This question is significant because it 
has long been established that efficient learning of inter­
nal representations of highly complex input is possible 
only if humans are capable of extracting such statistics 
(Barlow, 1989, 1990); but whether humans are truly ca­
pable of doing this has never been tested empirically.

First, we ran the simplest spatial version of the experi­
ment with adults, using the inventory of six combo pairs 
(144 different six-shape scenes) and testing for pairs of 
shapes (Fiser & Aslin, 2001). We found that after 6–8 min 
of continuous exposure to the familiarization scenes, adults 
chose the base combos over the random pairing of shapes 
significantly more often. This was true whether or not the 
random pairs were composed so that the individual compo­
nents appeared in the absolute positions they could appear 
in during familiarization. Specifically, in Experiment 1, 
subjects could rely on both shape co-occurrences and 
shape–position associations, since the elements of the ran­
dom pairs never appeared together or in the given position 

to gain further insights into the nature of human visual 
representational learning.

Humans Are Automatically Sensitive to 
“Suspicious Coincidences” From Birth

All the subsequent human visual learning experiments 
followed the same basic design. Typically, we used 12 
black shapes on a white background and created an in­
ventory of structured building blocks called combos. A 
combo was a set of 2 or more shapes in a particular spatial 
(or temporal) configuration; any time one element of the 
combo appeared, all other elements of the combo also ap­
peared in the predefined spatial (or temporal) configura­
tion. The inventory of combos was then used to generate a 
large number of scenes by selecting a number of combos 
randomly for each scene and placing them on a grid in 
various adjacent configurations, so that none of the com­
bos was completely separated from the other combos in 
the scene (Figure 1). The resulting scenes contained 6 or 
more shapes shown on a rectangular grid, so that there 
were no grouping cues for shape combos except the sta­
tistical cooccurrence of shapes across scenes.

An experiment was then conducted in two phases. 
In the first familiarization phase, subjects saw a long 
sequence of multishape scenes, each 2 sec long with a 
1-sec pause between them. The subjects had no explicit 
task other than paying attention to the scenes, and they 
received no feedback of any kind. In the second testing 
phase, a set of two-alternative forced choice (2AFC) trials 
were given to the subject. In each trial, two displays were 
presented for 1 sec, of which one showed a single combo 
or an embedded part of a combo and the other showed 
randomly selected individual shapes arranged in combo 
format (Figure 2). An embedded part of a combo having 
three or more elements was a subset of those elements, 
appearing in the same arrangement as in the combo (see 
Figure 2, bottom panel). The random combination of el­
ements showed shapes in an arrangement that they had 
never appeared in during familiarization. The subject had 
to choose the arrangement that looked more familiar, on 
the basis of the prior familiarization scenes. Each subject’s 
preference for the combo, or combo part, over the random 
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Figure 1. Generating familiarization scenes. Left: Twelve shapes 
organized into six pair combos with particular spatial arrange-
ments constitute the inventory. Right: Sample scenes generated 
from the combos using three randomly selected combos at a time 
and arranging them randomly on a 5 3 5 grid.
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Figure 2. Three types of test used in the visual learning experi-
ments. Left: A typical inventory of the given test type. Right: A 
typical example of a test trial. Top: A true triplet combo com-
pared with a random triplet. All individual shapes appeared 
an equal number of times during practice. Middle: A true pair 
combo compared with a pair of elements selected from frequent 
combos. The elements of the two pairs co-occurred an equal num-
ber of times, but elements of the true combo always appeared 
together, whereas elements of the pair in the right could equally 
often appear without each other. Bottom: A part of a true quad 
combo compared with a random triplet. All individual shapes 
appeared an equal number of times during practice.
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temporal statistical regularities in the visual domain (Fiser 
& Aslin, 2002a).

To determine whether this ability to extract statistics 
incidentally from visual scenes is a fundamental learning 
tool for humans at all ages, we tested whether these sensi­
tivities were present in infants as well. Simplified versions 
of the experiments above were run on 8-month-old infants 
in a preferential looking paradigm (Fiser & Aslin, 2002b). 
Here, the combos were pairs of elements, but the scenes 
consisted of only three elements—a combo and a corre­
sponding noise element that could appear in an arbitrary 
position around the combo. We found that after about 
2 min of familiarization with the scenes, infants looked 
at the picture of a base pair (a combo of the inventory) 
significantly longer than they did at a randomly combined 
pair of shapes from two combos (Figure 5). This replicated 
the results of the first two adult experiments.

We then asked whether infants would also perform well 
(as adults did) with frequency-balanced pairs. Infants 
looked significantly longer at the original combos than 
at the frequency-balanced random shape pairs (Figure 6). 
Interestingly, we found that infants did not replicate the 
adult results from the single shape test; they were unable 
to distinguish between low-frequency and high-frequency 
shapes. Together, these results confirmed that human 
adults and infants have access to information about condi­
tional probability relations in previously unknown visual 
scenes and thus, in principle, it is possible for them to 
extract higher order visual structures by statistical learn­
ing mechanisms.

Humans Encode Visual Information in  
a Minimally Sufficient Manner

In the next set of experiments, we turned to the well-
known problem of the “curse of dimensionality” or “com­
binatorial explosion” of statistical learning (Bellman, 
1961; von der Malsburg, 1995). Briefly, this problem 
arises from the fact that statistical learning of higher order 
structures in a complex environment is impossible, even 
theoretically, because the number of training examples 
needed for learning the right structures is prohibitively 
large. This hard limit on brute force learning is in direct 
contradiction to the claim that humans learn their internal 
visual representations by statistical learning. In order to 

during familiarization. In Experiment 2, only the number 
of shape cooccurrences differed between the true combo 
and the random pair. Both tests showed a significant prefer­
ence for true combos, and there was a significant difference 
between the results of the two experiments. As assessed by 
a postexperimental interview, subjects were unaware of 
their performance or even of the underlying structure of the 
scenes they saw. This means that the subjects became sensi­
tive to both the cooccurrence of shapes within the combos 
and the correlation between shapes and their position on 
the grid (Figure 3). These results confirmed that humans 
automatically and implicitly extract statistical structures of 
their visual experience, and that this representation relies on 
all aspects of the stimuli, including cooccurrences of and 
spatial information for individual elements.

In a third experiment, we used different appearance 
frequencies for different combos during training in order 
to create a situation where the cooccurrence of shapes 
within some combos was equated with the accidental 
cooccurrence of two shapes that did not belong to the 
same combo. With this frequency-balanced test, we could 
show that humans preferentially encode combos with two 
elements perfectly predicting each others’ appearance, as 
compared with a pair of shapes that appeared together the 
same number of times as the true combo but that could 
also appear without each other (Figure 4). In other words, 
humans were sensitive to the conditional probability sta­
tistic of element pairs, even when the joint probabilities 
were equated. This provided an empirical support to Bar­
low’s theory that human learning automatically detects 
“suspicious coincidences” in the environment and repre­
sents those as significant features (Barlow, 1989, 1990). 
We also found that, apart from the conditional prob­
abilities between shapes, humans maintain sensitivity to 
the frequency of the individual shapes, since they could 
readily select the shapes that appeared more often during 
the practice session (Figure 4). Sensitivity to conditional 
probabilities in the spatial modality amounts to sensitiv­
ity to transitional probabilities in the temporal modality; 
this has been demonstrated in the auditory domain before 
(Aslin, Saffran, & Newport, 1998). In a new set of ex­
periments, we demonstrated the same ability to learn such 
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Figure 3. The results of the first two visual statistical learning 
experiments. Bars show percentages of responses in which the 
true pair combos were selected. Error bars show SEMs; 50% is 
chance.
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pair combo and random pairs, and an embedded pair and a 
random pair. Subjects preferred the quad and pair combos 
to the random structures, but they were at chance perfor­
mance when they chose between a shape pair embedded 
in a quad and a random pair (Figure 7, right). This pattern 
did not change when we doubled the familiarization time. 
Interestingly, in a subsequent study, we found that embed­
ded triplets of the same inventory were preferred over ran­
dom triplets. In a series of control experiments, we ruled 
out a number of alternative explanations and concluded 
that this pattern of results suggests that subjects generate 
a minimally sufficient representation of combos instead 
of encoding the full structure of the underlying scenes 
(Fiser & Aslin, 2005). We also pointed out that that such 
a strategy could avoid the curse of dimensionality and fits 
naturally into a Bayesian framework.

investigate this issue, we used visual stimuli with hierar­
chical internal structure, where the number of available 
statistics for learning the underlying structure of the scene 
grew exponentially with the number of shapes involved in 
defining the underlying combos of the inventory (Fiser & 
Aslin, 2005). In the first experiment, we used the inventory 
of four triplet combos and tested whether humans would 
become sensitive to both the triplet structure and the struc­
ture of the pairs embedded in the triplet. We found that 
adults reliably selected the combo triplets over random 
shape triplets but that there was no such preference for the 
embedded pairs over random pairs (Figure 7, left).

In the next experiment, we increased the size of the 
combos and used the inventory of two quadruples and two 
pairs to construct the scenes. During the test, subjects had 
to choose between a quad combo and a random quad, a 
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of atomic elements, how does one select an inventory of 
chunks, based on those elements, that makes it possible to 
capture the input in a minimally sufficient way and also 
to have the maximum ability to generalize to inputs never 
experienced before? In our model, each selected inven­
tory (each choice of what combos or chunks will be the 
building blocks of scenes) defines a probability distribu­
tion over all possible scenes: P(scene1, scene2, . . . scenen | 
Inventory). Chunks are formalized as latent variables that 
describe the identity and relative positions of shapes mak­
ing up the chunk. If the chunk is present in a scene, the 
probability of these shapes in the given configuration in­
creases; if the chunk is absent, each element of the chunk 
can still appear with a “spontaneous” probability, regard­
less of what the other shapes do. Thus, when scenes are 
observed, chunks can be inferred as spurious coincidences 
of shapes, and for any set of chunks defining an inven­
tory, the probability of familiarization scenes can be com­
puted. On the basis of these probabilities, and assuming 
that chunks appear independently of one another, the best 
inventory can be selected by Bayesian model averaging by 
ranking the inventories according to the summed proba­
bility assigned by the inventory to the set of practice trials. 
Due to the “automatic Occam’s razor” effect of Bayesian 
model averaging (MacKay, 2003), this method will select 
the optimal inventory that describes the previous practice 
scenes sufficiently well but does not prevent generaliza­
tion to novel scenes.

We tested which of these five models best captures 
human performance in the learning experiments described 
above (Orbán et al., 2008). For this, we imported the train­
ing and test stimuli of each experiment, and trained and 
tested each model in exactly the same way as we did the 
humans. Figure 8 summarizes our findings. In the simplest 
test (panel A), the inventory contained six equal-frequency 
pairs. Only Type 1 failed to predict above-chance human 
performance on the basic test of true pairs versus mix­
ture pairs. In the frequency balanced test (panel B), the 
inventory contained six pairs of varying frequency, and 
both Type 1 and Type 2 failed to predict above-chance 
human performance on the test of true rare pairs versus 
frequency-balanced mixture pairs. In the simple embedded 
experiment (panel C), the inventory contained four equal-
frequency triplets, and human performance was above 

Humans Learn the Structure of Their Visual 
Environment in a Statistically Optimal Way

Using a Bayesian framework, we developed a com­
putational model to explain all of our learning results, 
and we compared this model to other existing models 
of human unsupervised learning (Orbán, Fiser, Aslin, & 
Lengyel, 2008). These previous models can be grouped 
into roughly four types. Type 1 models are based on fre­
quency counting, where the learning algorithm keeps 
track of the occurrence of individual patterns or events 
and patterns, with the highest frequencies representing 
the significant memory traces. This is the simplest type 
of learning model, and counting episodic memories be­
longs to this class. Type 2 models keep counts of pairwise 
cooccurrences of elements in the scenes. Apart from the 
important issue of how to define an element, this learn­
ing model is superior to Type 1 models because it oper­
ates on a vocabulary-based combinatorial description, not 
a single holistic representation. Type 3 models compute 
conditional or transitional probabilities between two ele­
ments of the scene rather than just their co-occurrence 
frequencies, and store combinations with high conditional 
probability as useful memory traces. Features obtained by 
this kind of learning are the “spurious coincidences” in the 
input stimulus explained by Barlow (1989, 1990, 2001). 
Type 3 models of learning are also the most popular among 
empirical researchers of statistical learning (Kuhl, 2004). 
In contrast to the first three models, Type 4 models are not 
simple event counters but rather full probabilistic mod­
els that learn all pairwise correlations between elements 
across scenes. The crucial difference between Type 3 and 
Type 4 models is that the latter assess the familiarity or 
likelihood of a new input on the basis of not only the ele­
ments that are present in the input, but also the elements 
absent from it. A Type 4 model is a statistically optimal 
implementation of the most extensively studied pairwise 
associative feature learning mechanisms in the literature 
that are typically modeled in unsupervised neural network 
architectures (Dayan & Abbott, 2001).

The model that we developed for testing against the 
previous models, which we refer to as ideal learner, is an 
explicit chunking model. Computationally, it is based on 
Bayesian model averaging, a statistically principled op­
timal way of solving the following problem: Given a set 
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ure 9). The key element of the design was that the four 
triplets shared shapes and the construction of the scenes 
was such that assessing only pairwise correlations was 
of no help in establishing the identity of the four circu­
lar triplets. Similarly, the four singletons appeared many 
times alone but also together as a quadruple, so that their 
pairwise correlations were also balanced. Thus, from the 
standpoint of first- and second-order correlations, there 
was no difference between the circular triplets and triplets 
composed from the singletons of the inventory. However, 
when higher order correlations are considered, the circular 
triplets were true building blocks of the inventory, whereas 
the singleton-based triplets were just faulty associations 
that did not capture the significant chunks in the scenes 
precisely enough.

We compared the prediction of the models with human 
performance in three tests: circular versus random triplets, 
singleton-based versus random triplets, and circular ver­
sus singleton-based triplets (Figure 10). Humans showed 
a significant preference for circular triplets in the first 
and third tests, and a chance performance in the second 
test. The pattern of predictions showed a clear difference 
between the Type 4 model and the ideal learner. We used 
the models, with their parameters tuned to account for the 
results in the previous experiments, to predict the model 
performances in the present experiment. The ideal learner 
followed human performance in all three experiments. In 
the first one, it correctly showed that circular triplets were 

chance on the basic test of true triplets versus mixture trip­
lets, and at chance on the test of embedded pairs versus 
mixture pairs. Types 1, 2, and 3 incorrectly predicted the 
same performance on the basic and embedded tests. Fi­
nally, in the second embedded experiment (panel D), the 
inventory contained two quadruples and two pairs, all with 
equal frequency. Human performance was above chance 
on the basic tests of true quadruples or pairs versus mixture 
quadruples or pairs, and on the test of embedded triplets 
versus mixture triplets, but it was at chance on the test of 
embedded pairs versus mixture pairs. Types 1, 2, and 3 in­
correctly predicted the same performance on all tests; only 
Type 4 and the ideal Bayesian learner captured the overall 
pattern of human performance in all these experiments. 
In summary, we found that only the ideal learner could 
qualitatively and quantitatively replicate all the patterns of 
human performance in all experiments.

However, the Type 4 model, most widely considered the 
appropriate model of human learning, performed relatively 
well; on the basis of these results, it cannot be discarded 
as a good model of human learning. Since Type 4 models 
and the ideal learner follow very different computational 
philosophies, however, we were able to design an experi­
ment in which the predictions of the two models were con­
tradictory and compare their results with human perfor­
mance. Specifically, the inventory of the experiment had 
four so-called “circular triplets,” four single elements that 
also sometimes formed a quadruple and two pairs (Fig­
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and approaches this problem from a statistical standpoint. 
In the following sections, I examine whether a similar ap­
proach can be applied to a seemingly very different learn­
ing domain: classical conditioning in animals.

Classical conditioning studies investigate how animals 
learn to predict a certain event (the unconditioned stimu­
lus, or US), as measured by their conditioned response 
(CR), on the basis of reliably correlating available cues 
(the conditioned stimulus, or CS; see Pearce & Bouton, 
2001). It is easy to see how this problem can be reformu­
lated as a representational learning problem; the goal of 
learning is to develop a representation of the outside world 
including the relations between the CS and the US, and, 
given this acquired world model, to successfully infer the 
likelihood of the US under various conditions. These ap­
proaches use two main types of world models, discrimina­
tive and generative (Courville, Daw, & Touretzky, 2006). 
The discriminative world model focuses only on the USs, 
given the CSs: P[US(t) | CS(t), D(t 2 1, . . . 1)], where 
D represents all previous experiences. In contrast, the gen­
erative world model assumes that the animal develops an 
internal representation of the whole pattern of events, in 
the case of conditioning including both the CS and US, as 
P[US(t), CS(t) | D(t 2 1, . . . 1)], and uses this world model 
for predicting the likelihood of the US. It is clear that the 
generative approach (also called the latent variable ap­
proach) is more similar to the ideal Bayesian learner used 
for modeling human visual statistical learning in the pre­
ceding section.

Like human perceptual learning, the majority of models 
interpreting classical conditioning follow the associative ap­
proach (Rescorla & Wagner, 1972). These models correctly 
captured the earliest and simplest experimental results, but, 
since behavior under more elaborated experimental condi­
tions has been identified in the large number of classical 
conditioning studies, the models capturing these new results 
also had to become more complex and varying (Mackintosh, 
1975; Pearce & Hall, 1980). Bayesian models represent an 
alternative approach to explaining these results. On the basis 
of Courville et al. (2006), I describe four cases where an ap­
propriately designed Bayesian model could provide useful 
insights into the nature of learning.

the true building blocks of the visual scenes. In the second 
test, it correctly signaled that a singleton-based triplet was 
not a very significant chunk of the visual scenes, despite 
having appeared across the set of scenes twice as often as 
a circular triplet. In the third, direct comparison, it signifi­
cantly favored the circular triplets over singleton-based 
triplets. In stark contrast, the predictions of model directly 
contradicted human performance by completely equat­
ing the significance of the two types of test triplets. As a 
result, even though the model correctly favored the cir­
cular triplets over random ones in the first test, it favored 
the singleton-based triplets equally in the second test, and 
could not tell the difference between the two in the third 
direct test. These results suggest that, rather than learning 
all pairwise correlations of an input, humans follow opti­
mal model averaging and achieve a minimally sufficient 
chunk-based representation of the input.

Bayesian Approaches to Classical 
Conditioning in Animals

The preceding sections highlighted the distinct ad­
vantages of investigating human visual learning within a 
modified perceptual learning paradigm, which views the 
learning process as a complex representational problem 
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Figure 9. The inventory of the experiment testing the differ-
ence between Type 4 models and the ideal learner. Combos in the 
shaded areas represent the circular triplets and the singleton com-
bos, respectively. Ratios at the bottom show the relative frequency 
of the combos across the practice scenes. All element appearance 
frequencies and pair co-occurrence frequencies were equated.
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limited one, where only certain parameters of the model, 
such as the rate of the CS, can be learned, but the full 
model is fixed. The flexibility of a general Bayesian model 
allows expression of uncertainty about the contingencies 
by learning the right model as well as the right parameters 
of the model. Courville, Daw, Gordon, and Touretzky 
(2003) developed such a model and showed how it can be 
used to explain two peculiar results of classical condition­
ing, second-order conditioning and conditioned inhibi­
tion, that were not captured explicitly by earlier models of 
classical conditioning. Both in second-order conditioning 
and in conditioned inhibition, there are two types of tri­
als: first, one in which a CS, A, appears with the US; and 
second, one in which A appears together with a different 
stimulus, C, only this time without any reinforcement. In 
second-order conditioning, then, C becomes an effective 
stimulus, since presenting it in the test trial elicits a CR. 
In contrast, in conditioned inhibition, C becomes an in­
hibitor during the test. More interestingly, the cause of this 
shift from exciting to inhibiting is due exclusively to an 
increase in the number of A–C trials during practice (Yin, 
Barnet, & Miller, 1994).

Bayesian model averaging can naturally accommodate 
these results on the basis of the same Occam’s razor prin­
ciple that was applied in the ideal Bayesian learner model 
on page 147. Specifically, having only a few A–C trials, 
there is not enough evidence available to promote a com­
plex model to explain the data. The algorithm will there­
fore prefer a model with a single underlying cause and 
attribute both practice types to this cause. Thus, when C is 
tested alone, it is considered a “good enough” signal to as­
sume the appearance of the US, leading to a CR. However, 
as evidence accumulates with more trials, a more com­
plex model gains support, whereby A–US and A–C will 
be explained by two different causes; so, when C appears 
alone, it is evidence that the US will not appear, inhibiting 
the CR. Thus, including and handling uncertainty as to 
which model correctly captures the data leads to deeper 
understanding of the conditioning process. Courville et al. 
(2003) developed a Bayesian model selection scheme 
based on the ideas that matched the parameters and setup 
of the Yin et al. study and demonstrated how similarly the 
model and the animals behaved.

Handling Uncertainty Due to the Changing 
Nature of the World

A final example of the benefits of reformulating clas­
sical conditioning as a representational learning problem 
by using a Bayesian approach comes from investigating 
the effect of the changing environment on modeling ani­
mal behavior. Courville et al. (2006), used the Bayesian 
formalism to offer a conceptual explanation of the effect 
of change. The basic idea is to incorporate into the genera­
tive world model the possibility that the contingencies of 
the environment can change by letting the parameters of 
the model evolve with time. If the model assumes a chang­
ing environment, it will represent the speed of change, 
and other contingencies will depend on this information. 
Having such a representation in the model implies the no­
tion that, in a changing world, animals will (possibly sub­

Handling Similarity and Discrimination in 
Classical Conditioning

As in human perceptual learning, handling similarity 
between input patterns in order to generalize to new in­
puts is a cardinal issue in classical conditioning. Both the 
“elemental” associative model of Rescorla and Wagner 
(1972) and “configural” models with “configural units” 
(Pearce, 1994) can handle this issue, using different ap­
proaches (for a review, see Wagner, 2003). Courville, 
Daw, and Touretzky (2004) reformulated the model of 
classical conditioning in terms of Bayesian model aver­
aging, a standard Bayesian method of accounting for the 
uncertainty that any particular model is the one that gen­
erated the data (Hoeting, Madigan, Raftery, & Volinsky, 
1999). The advantage of this formalism is that it gives a 
principled way to determine the number and identity of 
the configural units, and to decide whether the Rescorla–
Wagner or Pearce type of model captures the pattern of 
the data. Courville and his colleagues tested the perfor­
mance of their model on three basic patterns of results of 
classical conditioning: overshadowing, summation, and 
overlap. They have demonstrated that Bayesian model av­
eraging can reproduce these results as well as simple and 
configural methods can. However, a distinct advantage 
of the Bayesian approach is that it requires a complete 
model definition, and, once the model is defined, there is 
no further uncertainty about the selection of the config­
ural units. In addition, there are cases when the Bayesian 
approach can explain results that the other two types of 
models cannot, as we will see below.

Learning the Temporal Structure of the Stimuli
R. R. Miller and colleagues conducted a series of ex­

periments in the mid-1990s to investigate the extent to 
which animals learn the temporal structure of the stimuli 
(Barnet, Arnold, & Miller, 1991; Cole, Barnet, & Miller, 
1995; Cole & Miller, 1999). The common theme of all 
these experiments is that they suggest a more complex 
representation of the events occurring during the training 
phase that involves encoding second-order conditioning 
and relative timing among multiple participating stimuli. 
Thus, the classical Rescorla–Wagner theory cannot pre­
dict these experimental outcomes, and neither can its more 
contemporary extensions (Sutton & Barto, 1990). What is 
needed, as suggested by Miller and colleagues’ temporal 
coding hypothesis, is a compound representation of all 
the events, which representation lends itself to inferences 
about any relation between elements of this representation 
(Matzel, Held, & Miller, 1988). Courville and Touretzky 
(2002) noticed that this requirement is naturally fulfilled 
by Bayesian learning with a generative world model and 
developed such a computational model on the basis of a 
hidden Markov model that could successfully reproduce 
the results of all the experiments in the empirical studies 
mentioned above.

Handling Uncertainty of the  
Learned World Model

Even the classical Rescorla–Wagner model can be re­
formulated as a generative Bayesian model, but a very 
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events in order to react most effectively to future events? 
I proposed that this core question represents an extension 
of the classical definition of both domains that, never­
theless, is on the critical path toward a deeper under­
standing of the problem of learning and the computa­
tions in the brain that underlie solving this problem. I 
also suggested that the recently emerging probabilistic 
Bayesian framework, with a generative world model that 
is used to develop a full internal representation of the 
environment, is a natural candidate for investigating this 
question. On the basis of our research and that of oth­
ers, I presented a number of examples to show that, in 
both domains, the Bayesian models can provide many 
times an equal or better capture of the empirical data, as 
well as new insights into why the system performs the 
computation it does. This is a further demonstration that 
placing the problem in a clear statistical framework helps 
to clarify the true nature of the computations performed 
by the brain.

A final interesting point emerging from these studies 
in the two domains is how Bayesian inference outper­
forms associative learning in given tasks. Associative 
learning has always been the leading candidate for the 
basic learning method by which the brain acquires new 
representations (Hebb, 1949). Clearly, detecting correla­
tions among different aspects of the input signal must 
be the core of any learning. However, this by itself does 
not specify what representations will be developed on 
the basis of the correlations. Since the various options 
for solving the simple problem normalizing the Hebbian 
learning rule lead to very different final representations 
(Miller & MacKay, 1994), considering various aspects 
of the correlational structure in the input can lead to 
very different representations when those structures are 
prominent. In overly simple tasks, the simplest associa­
tive learning can perform very similarly to the more 
complex Bayesian inference based on internal represen­
tation. However, as shown on pages 148 and 151, when 
the complexity of the possible learning pattern increases, 
human and animal performance sharply diverge from 
what a simple associative scheme would predict. This 
suggests that the dynamic learning method implemented 
in the cortical circuitry of the brain performs a more 
sophisticated learning than simple associative learning 
does. The promise of the present article, and of a number 
of other recent studies investigating learning, is that a 
sufficiently sophisticated probabilistic learning model 
will be able to explain, under a unified computational 
principle, not only simple learning results such as clas­
sical perceptual learning and classical conditioning, but 
also more sophisticated types such as rule learning, rea­
soning, motor planning, and intelligent navigation.
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consciously) learn and represent the speed at which given 
contingencies change.

Once this modification to the world model is incorpo­
rated, the link between Bayesian models and classical as­
sociative models is straightforward. In Bayesian models, 
uncertainty about the inferred parameters is represented 
explicitly (Griffiths & Yuille, 2006), and this uncertainty 
is directly related to the associability defined in the as­
sociative models (Dayan & Long, 1998). Just as more 
uncertainty about a model parameter leads to more influ­
ence of newly obtained information (i.e., more change in 
the parameter) in the Bayesian model, larger associabil­
ity leads to more learning in the associative model. The 
relation above also implies that uncertainty is directly 
linked to change. However, change is also directly related 
to surprise: When change in parameters occur, the new 
parameters will produce new events outside the scope of 
the old parameters—in other words, surprising events. 
Thus, if the world model incorporates representation of 
the speed of parameter changes, a surprising event will 
signal a rapid change in the parameter, which will in turn 
increase uncertainty in the parameter, giving rise to more 
rapid learning. This Bayesian account provides a clear for­
malism that links the different notions under a coherent 
view, all based on one empirically testable assumption: 
that animals develop internal representations of the speed 
of change in their environment.

Courville et al. (2006) implemented such a Bayesian 
model and tested it in a number of classical conditioning 
experiments. These included such experiments as latent 
inhibition (Lubow, 1973), reinforced preexposures (Hall 
& Pearce, 1979), and unblocking by reinforcer switch 
(Blaisdell, Denniston, & Miller, 1997), where surprising 
reinforcers speeded up learning, which was correctly cap­
tured by both the Pearce–Hall associative model (Pearce 
& Hall, 1980) and the Bayesian model. They also tested 
such experiments as latent inhibition and overshadowing 
(Blaisdell, Bristol, Gunther, & Miller, 1998), where a sur­
prising neutral stimulus caused increased learning. These 
results could not be captured either by the Pearce–Hall 
associative model or by a Bayesian model that did not de­
velop a representation of the world by a generative world 
model. Finally, Courville et al. (2006) used the partial re­
inforcement extinction effect (Gibbon, Farrell, Locurto, 
Duncan, & Terrace, 1980; Haselgrove, Aydin, & Pearce, 
2004; Rescorla, 1999) to show that fixed-rate stochastic 
reinforcement might not induce faster learning. This is an 
interesting result, because the Pearce–Hall and the Bayes­
ian models provide opposite predictions, and animal be­
havior follows the prediction of the Bayesian model.

Discussion

In this article, I have reviewed two seemingly distinct 
areas of the research on learning, human perceptual 
learning and animal classical conditioning, that tradi­
tionally are not considered as dealing with similar is­
sues. I argued that, despite obvious differences, the core 
question in these domains is essentially the same: How 
to combine the knowledge about observed perceptual 
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