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Cortical circuits obey Dale’s principle: each neuron either excites or inhibits all its postsynaptic targets.
There is no known principled justification for why this must be so; in fact, Dale’s principle is considered
– if at all – a mere constraint in neural network models. Here we provide a novel rationale for Dale’s
principle: networks with separate excitatory (E) and inhibitory (I) populations preserve the temporal re-
lationships between their inputs, thus preventing spurious temporal correlations that could mislead spike
timing-dependent plasticity (STDP). To show this, we study a recurrent firing rate network model with ar-
bitrary nonlinear response functions. We assume that, in line with known Hebbian mechanisms at both
excitatory and inhibitory synapses, the magnitudes of recurrent synaptic weights are proportional to the
covariance of pre- and postsynaptic rates, while their sign is determined by the E/I identity of the presynap-
tic cell. We show that this connectivity pa�ern is both necessary and su�icient to ensure that neural circuit
output will be non-sequential, if the input has no specific temporal ordering of its elements. Conversely, if
there is some specific temporal ordering of inputs to di�erent neurons, then the neural circuit output will
also have sequences that reproduce those of the input. Our theory predicts the relative degree of sequen-
tiality of V1 responses to visual stimuli with di�erent statistics, which we confirmed in cortical recordings:
stimuli that are similar in lacking temporal ordering evoke responses that di�er in their sequentiality, de-
pending on whether V1 has been adapted to them. Our results suggest a novel and unexpected connection
between the ubiquitous Dale’s principle and STDP, namely that Dale’s principle acts as a control mecha-
nism to guarantee that STDP will act only on input-driven temporal sequences, rather than on internally
generated ones.

We consider a set of n neurons with internal ac-
tivities (e.g. subthreshold membrane potentials) vi ,
i = 1,… , n, and the following standard dynamics:

⌧
dvi
dt

= �vi(t) +
nX

j=1

Jij fj
⇥
vj(t)

⇤
+ ⇠i(t) (1)

where Jij is the synaptic weight between presynap-
tic neuron j and postsynaptic neuron i, fj[v] is the
transfer function of neuron j mapping its internal ac-
tivity into a firing rate, ⇠i is the external input re-
ceived by neuron i and ⌧ = 20ms is a single neuron
time constant. We assume that the external input is
a stationary Gaussian process, with some mean and
covariance, ⌃in

ij (s) = h�⇠i(t + s) �⇠j(t)i, where angular
brackets denote averaging over di�erent trials, � de-
notes deviations from the mean, and s is the time lag.
We assume that the system relaxes to a unique sta-
tionary distribution over v(t)which is approximately
multivariate normal.

We consider the case when each synaptic weight
Jij is the product of the integrated covariance be-
tween the inputs to the pre- and postsynaptic neu-
rons, ⌃̄in

ij =
R
⌃in

ij (s) ds, and a presynaptic factor �j

whose sign depends on whether the presynaptic cell
is excitatory (>0) or inhibitory (<0):

Jij = ⌃̄in
ij �j (2)

We further assume that all input correlations are pos-
itive, which in turn guarantees that Eq. 2 is consis-
tent with Dale’s principle. An alternative form for
the synaptic matrix is Jij = ⌃̄out

ij �j , where ⌃̄out
ij =R

⌃out
ij (s) ds and ⌃out

ij (s) = h�vi(t + s) �vj(t)i is the co-
variance of the two neurons’ responses. This form is
consistent with Hebbian learning and empirical ob-
servations [Cossell et al, Nature (2015)]. While both
forms of synaptic matrix are consistent with our re-
sults, we use Eq. 2, as the input is given and we can
fix the synaptic strengths accordingly.

Our first main result is the following: the network
will generate non-sequential activity, i.e. all out-
put cross-covariances will be temporally symmetric
(⌃out

ij (s) = ⌃out
ij (�s)) if, and only if, the input too is

time-reversible (⌃in
ij (s) = ⌃in

ij (�s)). Secondly, if the in-
put has some degree of sequentiality, expressed as
the matrix of “expected pair-wise time lags” in the
network, then the output will show the same sequen-
tial activation up to a linear spatial transformation:R
s⌃out(s) ds = A

⇥R
s⌃in(s) ds

⇤
AT. Finally, the form

of the synaptic matrix we consider in Eq. 2 is both
necessary and su�icient for the conservation of se-
quentiality.
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Figure 1. From top to bo�om: Input current; network activity in the case of a Dale synaptic matrix; a
non-Dale synaptic matrix; and Dale synaptic matrix with non-matching covariance. From le� to right: the
synaptic matrix; time series of network activity for all neurons (200ms sample); spatial covariance (at s = 0
time lag) between all neuron pairs; and normalized cross-correlations as a function of time lag. Cross-
correlations of the input are time-symmetric, they remain time-symmetric for a Dale synaptic matrix (de-
spite substantial changes in spatial covariances), but they become asymmetric for a non-Dale matrix or a
Dale matrix with non-matching covariance.

Fig. 1 shows the dynamics of the model for an ex-
ample non-sequential input (top). Cross-correlations
of network activity are time-symmetric for a Dale
synaptic matrix (2nd row), satisfying Eq. 2, they are
not time-symmetric for a non-Dale synaptic matrix
(3rd row), and they are also not time-symmetric for
a Dale matrix that doesn’t match the input covari-
ance (4th row). Thus, unless the synaptic matrix fol-
lows Eq. 2, the network creates spurious sequential-
ity. STDP acting on these cross-covariances would
lead to plasticity that does not reflect any input se-
quentiality.

Our theory makes non-trivial predictions concerning
the temporal reversibility of V1 activity under dif-
ferent stimulation conditions. If the recurrent con-
nectivity satisfies Eq. 2 for input covariances ⌃in cor-
responding to natural movies (to which it has been
adapted), then responses to such movies should have

the same degree of reversibility as the input. As
natural movies can be modelled as being largely
non-sequential at the level of features V1 extracts
[Clopath et al, 2010] we expect weakly sequential re-
sponses. Noisy stimuli, to which V1 is not adapted,
should instead elicit sequential activity. We tested
these predictions in multiunit recordings from V1
of awake ferrets in di�erent age groups spanning
from eye opening (P30) to full maturity (P130+).
Fig. 2 shows that temporal asymmetries are small
but they are indeed larger for noise vs movie stim-
uli (p=3·10�4). Furthermore, temporal asymmetries
grow with postnatal age (youngest age group vs rest,
p=0.004). Our results suggest a novel and unexpected
connection between the ubiquitous Dale’s principle
and STDP: preservation of sequentiality from input
to output guarantees that STDP will only learn gen-
uine input correlations.
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Figure 2. Le�: Cross-correlations for movie- (light
blue) and noise-evoked activities (light green) in
multi-unit recordings from awake ferret V1, post-
natal day 129; and their odd part extracted (dark
blue and dark green). Right: Asymmetry (log area
under odd part / area under even part) as a func-
tion of postnatal day in the two cases. Asymmetry
is small, larger for noise-evoked activity and the dif-
ference from movie-evoked increases with age.


