
 
 

www.sciencemag.org/cgi/content/full/331/6013/83/DC1 
 
 
 

 
Supporting Online Material for 

 

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal 
Internal Model of the Environment 

Pietro Berkes,* Gergő Orbán, Máté Lengyel, József Fiser 
 

*To whom correspondence should be addressed. E-mail: berkes@brandeis.edu 
 

Published 7 January 2011, Science 331 83 (2010) 
DOI:  10.1126/science.1195870 

 
This PDF file includes 
 

Materials and Methods 
SOM Text 
Figs. S1 to S4 
Tables S1 and S2 
References 

 



Methods

Animal preparation and data acquisition
Neural activity was recorded from 16 ferrets at different stages of visual development (Table S1).
The details of the surgical procedures have been described in detail previously (S1, S2), and were
approved by the University of Rochester Committee on Animal Research. Briefly, a linear array of
16 electrodes, spaced by 200 micrometers, was implanted in layer 2-3 of the primary visual cortex
(V1) under isoflurane anesthesia. The electrodes typically provided clear multi-unit (and occa-
sionally single-unit) signal on each channel. The signal was pre-processed by band-pass filtering
(600 − 6000 Hz) and digitized at 10 kHz. Spike discrimination was performed offline by manu-
ally setting a separate voltage threshold for each electrode. Stable recordings were maintained for
8− 12 hours.

Visual stimulation
Shortly after recovery from surgery, neural activity in response to different stimulus ensembles was
recorded in awake animals. Animals rested on a padded platform with their head fixed to a rigid
metal post and were free to make natural eye movements. Stimuli were displayed on a 4 × 3 feet
back-projection screen at a distance of 30 cm from the head, covering 130 × 100 degrees of visual
angle. The screen resolution was 1024× 768 pixels, with a refresh rate of 75 Hz.

Animals were presented with four stimulus conditions:

• Movie evoked activity: Stimuli consisted of a movie (the trailer for the film The Matrix),
presented at a resolution of 720×480 pixels and a frame rate of 24 Hz. This stimulus ensemble
is meant to capture the distribution of the statistics of natural stimuli at the level of the simple
visual elements encoded by V1 neurons.

• Noise evoked activity: Random noise was generated as a grid of black and white squares,
each occupying 5 × 5 degrees of visual angle. A new pattern was generated at random at
each screen refresh, with white squares appearing independently with probability 1/4.

• Grating evoked activity: Stimuli consisted of a sequence of full-field, drifting sinusoidal
gratings with random frequency and orientation (2 sec per grating, 5 frequencies at 0.5 −
8 deg/cycle, 9 orientations at intervals of 20 deg).

• Spontaneous activity: Neural activity was recorded in complete darkness eliminating all
light sources. Control tests found no significant differences in spontaneous neural signals
recorded in the experimental setup vs. in a closed box padded with black clothes (S1).

Recordings with different stimulus ensembles were performed in interleaved trials of 100 sec, 15
trials for each ensemble, for a total of 25 min of recording in each condition. Table S1 reports the
number of animals for each age group recorded in each condition.
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Data analysis
Spike timing data over the 16 electrode channels was discretized in 2 ms bins and binarized for
each stimulus condition, a, thus yielding a 16-bit binary word, r(a)t , in each time bin t (Fig. 2A).
Neural activity in each condition was thus represented as a sequence of these words from time bin
1 through T , r(a)1:T . We then constructed the empirical distribution of patterns in each condition:

p̂
(a)
static(r) =

1

T

T∑
t=1

δ
r,r

(a)
t

(Eq. S1)

simply representing the frequency with which activity pattern r was observed in r
(a)
1:T .

To assess the contribution of the correlational structure in our results, we also constructed
surrogate distributions by assuming all channels were independent, and computing the product of
the marginal empirical distributions

p̂
(a)
factorized static(r) =

∏
i

p̂
(a)
static(ri) , (Eq. S2)

where the marginal distribution p̂(a)static(ri) =
∑

r′ δri,r′i
p̂
(a)
static(r

′) represented the frequency with which
channel i took on the value ri (irrespective of the other channels). This manipulation left the
marginal distributions (and thus the firing rate over individual channels) intact, but removed all
statistical dependencies between channels.

The empirical distributions of transitions between neural activity patterns, p̂(a)transition(rt+τ , rt),
were similarly collected by measuring the frequency with which each pattern rt was followed by
pattern rt+τ after τ msec in condition a. The transition distributions over all the 16 channels would
have required filling 232 histogram bins in the empirical distributions, which would have resulted in
severe undersampling of the histogram even with the large amount of data at our disposal. Analyses
on transition probabilities were thus limited to every second channel in the array, thus keeping
the total number of histogram bins equal to that in the static case. The contribution of temporal
dependencies was assessed by factorizing the distribution over time, assuming that successive time
bins were independent, which was obtained by replacing the full transition distribution by

p̂
(a)
factorized transition(rt+τ , rt) = p̂

(a)
static(rt+τ ) · p̂

(a)
static(rt) . (Eq. S3)

This manipulation kept all spatial (across-channel) correlations of all orders intact, but removed
statistical dependencies in time.

Dissimilarity of neural activity distributions
We compared the distributions of neural activity patterns under different stimulus conditions using
a standard information-theoretical measure of dissimilarity known as the Kullback-Leibler (KL)
divergence (S3):

KL
[
p(1) ‖ p(2)

]
=
∑
r

p(1)(r) log
p(1)(r)

p(2)(r)
, (Eq. S4)
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for two distributions, p(1) and p(2), over activity patterns, r. The KL divergence is zero if and only if
p(1) = p(2) and increases with increasing dissimilarity. An intuitive interpretation of this measure is
the cost in bits of encoding the activity patterns r, distributed as p(1), using distribution p(2) instead
of the optimal encoding distribution, i.e., p(1) (S4). An advantage of this measure is that it takes
into account statistical dependencies of all orders between all channels, as opposed for example to
comparing the distribution of correlations between pairs of channels across stimulus conditions.

In the case of transition probability distributions, we compared conditional distributions, p(1)(rt+τ |rt)
and p(2)(rt+τ |rt), instead of the joint distributions, in order to eliminate differences that are due to
dissimilarities in the spatial distributions, p(1)(rt) and p(2)(rt), since these have been considered
already in the analysis for the static case. This was done by averaging the KL divergence over
p(1)(rt): 〈

KL
[
p(1)(rt+τ |rt) ‖ p(2)(rt+τ |rt)

] 〉
p(1)(rt)

(Eq. S5)

= KL
[
p(1)(rt+τ , rt) ‖ p(2)(rt+τ , rt)

]
−KL

[
p(1)(rt) ‖ p(2)(rt)

]
, (Eq. S6)

i.e., the average KL divergence between conditional transition probabilities could be computed as
the difference between the KL divergence of the joint transition probabilities and the KL divergence
of the static probabilities.

A successful estimation of KL divergence between neural activity distribution must take into
account the uncertainty about the real underlying distributions that is the result of observing only
a limited amount of samples, and a potential bias in the estimation of information theoretical
quantities (S5). We addressed these issues using a Bayesian estimator for the KL, followed by the
extrapolation of the number of samples to infinity, as described in the next section.

Estimation of the Kullback-Leibler divergence between neural activity distri-
butions
The Kullback-Leibler (KL) divergence is a measure of dissimilarity between two distributions that
is also appropriate to measure the efficiency of an encoding system. However, estimating KL
divergence reliably when the two distributions whose divergence needs to be measured, p(1) and
p(2), are only known through samples requires two issues to be resolved.

First, under experimental conditions we do not observe p(1) and p(2) directly, but only a limited
amount of samples from them. Because the empirical distributions of samples are slightly differ-
ent from the underlying distributions we cannot determine p(1) and p(2) with absolute certainty.
We addressed this issue by taking into account the resultant uncertainty about p(1) and p(2) ex-
plicitly through Bayesian inference: we computed posterior distributions over these distributions
(represented as multinomial vectors∗, π(1) and π(2)) given the experimental data recorded

P
(
π(a)|r(a)1:T

)
∝ P

(
r
(a)
1:T |π

(a)
)
P
(
π(a)

)
a ∈ {1, 2} . (Eq. S7)

∗For the purposes of this section we represent probability distributions over the 216 possible 16-bit binary pat-
terns with vectors of 216 elements, π(a), containing the parameters of the corresponding multinomial distribu-
tions, such that the probability of a 16-bit binary pattern r, p(a)(r), is given by element π(a)

j , with scalar index
j =

(
20 21 22 . . . 216

)
· r. The KL divergence between two such vectors is computed equivalently to Eq. S4 as

KL
[
π(1) ‖ π(2)

]
=
∑
j π

(1)
j log

π
(1)
j

π
(2)
j

.
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Activity patterns were assumed to be sampled i.i.d. from the respective multinomial distributions
(but see the previous section for the analysis of temporal dependencies), π(1) and π(2):

P
(
r
(a)
1:T |π

(a)
)

=

T∏
t=1

p(a)
(
r
(a)
t

)
=
∏
j

[
π
(a)
j

]T π̂(a)j
a ∈ {1, 2} , (Eq. S8)

where π̂(a) was the multinomial vector corresponding to the empirical distribution (as defined in
Eq. S1), and so T π̂(a)j was the number of times the activity pattern with scalar index j was observed
in r

(a)
1:T . The prior over the underlying distributions was

π(a) ∼ Dirichlet
(
α(a)

)
, where α(a) = 1 a ∈ {1, 2} , (Eq. S9)

which allowed us to re-write the posterior in Eq. S7 in a more compact form:

π(a)|r(a)1:T ∼ Dirichlet
(
α′(a)

)
, where α′(a) = α(a) + T π̂(a) a ∈ {1, 2} . (Eq. S10)

We then estimated the KL divergence between p(1) and p(2) as the average over these posterior
distributions:

KLT =

∫
KL
[
π(1) ‖ π(2)

]
P
(
π(1)|r(1)1:T

)
P
(
π(2)|r(2)1:T

)
dπ(1) dπ(2) , (Eq. S11)

where KLT was the estimate of the KL divergence of the two neural activity distributions from
which the observed data, r(1) and r(2), were sampled. The subscript T indicates that we took
into consideration data points from time 1 to T (the last data point). It was possible to derive a
closed-form equation for Eq. S11 by solving the integral:

KLT =
∑
j

α
′(1)
j

α
′(1)
0

[
ψ
(
α
′(1)
j + 1

)
− ψ

(
α
′(1)
0 + 1

)]
−
∑
j

α
′(1)
j

α
′(1)
0

[
ψ
(
α
′(2)
j

)
− ψ

(
α
′(2)
0

)]
(Eq. S12)

where α
′(a)
0 =

∑
j

α
′(a)
j a ∈ {1, 2} , (Eq. S13)

and ψ is the digamma function.
A second, well-known issue that needed to be addressed was that the estimation of information

theoretical quantities from a limited number of samples is biased (S5). In order to compensate
for this bias, we followed the method proposed in (S6) for the estimation of the entropy of neural
distributions: we computed the value of the estimator for fractions of the data and extrapolated for
the number of samples tending to infinity. This was done by fitting KLT ′ (Eq. S12) as a polynomial
function of 1/T ′ with parameters β0, β1, and β2 at T ′ = T , T/2, and T/4:

KLT ′ = β0 +
β1
T ′

+
β2
T ′2

. (Eq. S14)

When using fractions of the data, we computed the average estimate for multiple non-overlapping
blocks. For example, for T ′ = T/2 we computed KLT/2 for the first and second half of the data
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separately and then averaged these two estimates. The final value for the KL estimation was
obtained by taking the limit T ′ →∞ in Eq. S14, which gave

KL∞ = β0 . (Eq. S15)

Validation experiments show that the method described above was appropriate for accurately
estimating the KL divergence of distributions of the same size as the neural activity distributions
analyzed in the main paper (216 possible patterns), given the same number of samples (750, 000
samples). For each run, we drew two distributions over 216 states, p(1) and p(2), from a Dirichlet
prior with parameters α(1) = α(2) = 1, and measured their true KL divergence. We then drew
750,000 samples from each of the two distributions, r(1)1:T and r

(2)
1:T , from which we estimated the

KL divergence according to the method described above. Figure S4a shows the histogram of
percent error over multiple runs. The results show that the method is unbiased and the error is very
small (average percent error is −0.003± 0.3).

Model selection test
In the paper the divergences of neural activity distributions were often compared under different
conditions (e.g., comparing the divergence between movie-EA and SA with the divergence be-
tween movie-EA and surrogate-SA, Fig. 3, or comparing the divergence between movie-EA and
SA with the divergence between noise-EA and SA, Fig. 4). Establishing whether two samples are
significantly different from one another is known as the two-sample problem, and is most often ad-
dressed by applying Student’s t-test. However, our data have two characteristics which are known
to cause the t-test to have low statistical power: a small number of samples from each population
(between 2 and 6 samples, i.e., animals), and widely different variances. To mitigate this problem,
we used a more flexible and powerful statistical test based on model selection. Even though the
construction of the test follows the standard hypothesis testing paradigm, we report all the steps
here in detail, as (perhaps surprisingly) it is uncommon to design a statistical test adapted to the
task at hand. At the end of the section we extensively validate the test by showing that it typically
outperforms a two-samples t-test in cases similar to the ones analyzed in the paper.

The model selection test proceeds by computing the probability of observations (here: esti-
mated KL divergences) coming from the two populations, y(1),y(2) to be compared under three
different hypotheses.

• M0 is the null-hypothesis and assumes that all the data was drawn from a single Gaussian
distribution with unknown mean, µ0, and variance, σ20:

y(1),y(2) ∼ Normal
(
µ0, σ

2
0

)
. (Eq. S16)

• M1 assumes that the data was drawn from two Gaussian distributions with unknown but
different means, µ1 and µ2, and equal variances, σ212:

y(1) ∼ Normal
(
µ1, σ

2
12

)
(Eq. S17)

y(2) ∼ Normal
(
µ2, σ

2
12

)
. (Eq. S18)
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• M2 assumes that the data was drawn from two Gaussian distributions with unknown but
different means, µ1 and µ2, and different variances, σ21 and σ22:

y(1) ∼ Normal
(
µ1, σ

2
1

)
(Eq. S19)

y(2) ∼ Normal
(
µ2, σ

2
2

)
. (Eq. S20)

Using these two alternative hypotheses ensures that the test has good statistical power indepen-
dently of whether the underlying distributions have the same or different variance.

The test statistic for hypothesis testing expresses the relative strength of belief that at least one
of the alternative hypotheses, M1 or M2, is more probable than the null hypothesis, M0. For this,
we defined the test statistic as the maximum of the two marginal likelihood ratios given the data,
y = {y(1),y(2)}:

m = max

{
P(y|M1)

P(y|M0)
,
P(y|M2)

P(y|M0)

}
(Eq. S21)

High values of m indicated that one of the alternative hypotheses had higher probability than the
null hypothesis given the observed data, and thus that the two populations were likely to be distinct.

Hypothesis testing proceeded as standard for statistical tests by computing the distribution of
m under M0, and reporting the P-value for the test statistics computed on observed data:

P = P(m > mobserved|M0) (Eq. S22)

The distribution of m depends on the number of samples, N1 and N2, in the two populations. Thus,
we computed tables for these distributions based on Monte Carlo simulations by drawing different
numbers, N1/2, of random samples from M0 and computing m for each N1/2 according to Eq. S21.

In order to compute the individual marginal likelihoods, P(y|Mi), the unknown parameters, θ
(here: means and variances of the normal distributions) were marginalized out by Monte Carlo
integration:

P
(
y(1),y(2)|Mi

)
=

∫
P
(
y(1),y(2)|θ,Mi

)
P(θ|Mi) dθ (Eq. S23)

' 1

Nsamples

∑
θj∼P(θ|Mi)

P
(
y(1),y(2)|θj ,Mi

)
, (Eq. S24)

with i ∈ {0, 1, 2}. Integrating over the parameters ensured that the alternative hypotheses, M1 and
M2, did not have higher marginal likelihoods simply for having a higher number of parameters,
due to the “automatic Occam’s razor” property of Bayesian model selection (S4, Ch. 28): models
with multiple parameters are automatically penalized because the probability mass over parame-
ters, P(θ|Mi), is spread over a larger volume that does not necessarily overlap with the parts of
parameter space where the likelihood, P

(
y(1),y(2)|θ,Mi

)
, has high values. As a consequence, the

three alternative hypotheses are directly comparable, which makes it possible to combine them in
a single test statistic (Eq. S21). This is in contrast with likelihood ratio tests, that use as a test
statistic the ratio of the likelihood of the data given maximum likelihood parameters. In such a
case, models with a higher number of parameters typically have a higher likelihood, which may
lead to overfitting (particularly with a small number of samples), and thus to a high probability
of Type I errors. Note that being careful about these issues is only important for increasing the
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power of our test, and it does not influence Type I error rates as this will be computed using the
distribution of our statistics as in classical statistical tests, and will thus be guaranteed to be below
threshold.

For computing the marginal likelihood of each hypothesis (Eq. S24) we defined prior distri-
butions over the unknown parameters of the corresponding distribution(s), i.e. the mean(s) and
variance(s), as described below. Our choice for the prior distributions was based on two basic
ideas: First, the uncertainty over the mean of the distributions should be inversely related to the
number of data points. We thus defined the prior over the means to be a normal distribution with
a standard deviation that scaled as the standard error of the mean (s.e.m.), i.e., as 1/

√
N . This im-

plied that the uncertainty over the mean under M0 would be smaller than that of the means under
M1 and M2, since M0 considered the data points from both populations. Second, we chose a broad,
uniform distribution as the prior over the standard deviation of the data. In order to simplify the
notation, and without loss of generality, we assume in the following that y has a mean of 0 and an
empirical variance of 1, which can always be achieved by shifting and rescaling the data.

• Under the null hypothesis, M0 (Eq. S16), the prior over µ0 was a normal distribution centered
at the empirical mean, y, with a standard deviation equal to the standard error of the mean,
1/
√
N . For the standard deviation, σ0, we chose an interval bounded below by zero (since

σ0 is a positive quantity), and above by 3 times the empirical standard deviation of the data
(which is 1 due to normalization). This interval is quite conservative, as the mean would
need to be far outside the observed range for the real standard deviation to reach that value.
We thus defined the prior as a uniform distribution between these two bounds. In summary,

µ0|M0 ∼ Normal

(
y,

1

N

)
(Eq. S25)

σ0|M0 ∼ Uniform(ε, 3) (Eq. S26)

where ε = 10−3 was a value close to zero to avoid numerical errors, and N = N1 + N2 was
the total number of samples from the two populations.

• For the first alternative hypothesis, M1 (Eq. S17-Eq. S18), the priors over the parameters
were defined as for M0, with the exception of the range for σ12, which was decreased to 1
in order to reflect the fact that the the data from the two individual populations must have a
smaller standard deviation than the combined data:

µ1|M1 ∼ Normal

(
y(1),

1

N1

)
(Eq. S27)

µ2|M1 ∼ Normal

(
y(2),

1

N2

)
(Eq. S28)

σ12|M1 ∼ Uniform(ε, 1) , (Eq. S29)

where N1 and N2 were the number of samples from the two populations.
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• Finally, priors for the second alternative hypothesis, M2, were defined similarly as for M1:

µ1|M2 ∼ Normal

(
y(1),

1

N1

)
(Eq. S30)

µ2|M2 ∼ Normal

(
y(2),

1

N2

)
(Eq. S31)

σ1|M2 ∼ Uniform(ε, 1) (Eq. S32)
σ2|M2 ∼ Uniform(ε, 1) (Eq. S33)

The P-value corresponds to the Type I error of rejecting the null hypothesis even though the
data was drawn from M0, and is thus the quantity that we were interested in reporting for our data.
In order to compare the test with others, we also needed to consider the Type II error of failing to
reject the null hypothesis even though the data came from two different distributions. We computed
the Type II error by sampling N samples from two Gaussian distributions, one with zero mean and
unit variance, and the second with mean 1 and standard deviation between 0.25 and 2. Type I error
was kept fixed at 5% by rejecting the null-hypothesis whenever the P-value of the test was smaller
than 0.05. Figure S4b–d shows the Type II error over 50, 000 runs for the t-test (Fig. S4b) and the
model selection test (Fig. S4c). For both tests, the Type II error decreased with the number of
samples and with decreasing standard deviation of the second population, as y(1) and y(2) became
more separated. The Type II error of the model selection test showed a remarkable improvement
of up to 25% over the t-test for the vast majority of cases (Fig. S4d). The single exception was
when the assumptions of the t-test were exactly matched, with the two population distributions
having the same variance, in which case there was a small increase in Type II error of at most 1%
(Fig. S4d, green line).

Sparseness measures
We measured both population sparseness (i.e., the sparseness of the population response at any
given time) and lifetime sparseness (i.e., the sparseness of the response of individual neurons over
time) of the firing rates ri,t on channel i at time t, collected in 10 msec bins.†

The definitions of the sparseness measures were as follows. For lifetime sparseness we used a
standard measure of sparseness (S7):

TRilifetime =
1

1− 1/T

1−
(∑T

t=1 ri,t/T
)2

∑T
t=1 r

2
i,t/T

 (Eq. S34)

where T is the total number of data points. TR is defined between zero (less sparse) and one (more
sparse), and depends on the shape of the firing rate distribution. For monotonic, non-negative
distributions, an exponential decay corresponds to TR = 0.5, and values smaller and larger than 0.5
indicate distributions with lighter and heavier tails, respectively (S8). For every animal, we report
the value of TRilifetime, averaged over all channels, i (Fig. S2).

†Since these firing rates were measured in time bins of longer duration, they were not binarized as in previous
sections.
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The first measure of population sparseness is a direct adaptation of Eq. S34, where sparseness
is measured across neurons instead of time. To eliminate differences in sparseness due to changes
in global neural activity across age, we rescaled firing rates as

r̂i,t =
ri,t√∑T

t′=1 r
2
i,t′/T

(Eq. S35)

and defined

TRtpopulation =
1

1− 1/N

1−
(∑N

i=1 r̂i,t/N
)2

∑N
i=1 r̂

2
i,t/N

 (Eq. S36)

where N is the total number of channels. Note that sums are now taken over channels (index i)
rather than time (index t). We discarded bins with no neural activity, as population sparseness is
undefined in such cases. In Fig. S2 we report the distribution of TRtpopulation, averaged over time,
t, for each animal.

The second measure of population sparseness is known as activity sparseness, and it directly
quantifies the number of neurons active at any time (S9):

AS =
1

T

T∑
t=1

(
1− nt

N

)
(Eq. S37)

where nt is the number of active channels at time t. Channel i is defined to be active at time
t if its firing rate, ri,t, is above the upper 68th percentile of the distribution of firing rates over
time (i.e., the equivalent of one standard deviation for non-negative distributions). AS is thus
invariant to multiplicative and additive changes in firing rate. However, since it discards most of
the information about the shape of the distribution, it is a less sensitive measure than TRpopulation.
AS is defined between 0 and 1, with 1 meaning that no neuron was active above the threshold, and
0 meaning that all neurons were active at all times.

Since our recordings consisted of multi-unit activity, the reported sparseness is a lower bound
on the true sparseness. Nevertheless, this did not affect our conclusions because they were based
on the relative comparison of sparseness over age. Changes in average firing rate with age also
cannot account for our results, as they are factored out in the population sparseness measures,
TRpopulation and AS. TRlifetime is unaffected by multiplicative changes in firing rate, but not by
additive changes. This is because lifetime sparseness is motivated by metabolic costs, and should
thus depend on the overall level of activity. These results are also discussed in S10.

Testing trends over development
Trends over development (Figs. 2B, 3A, 3B, 3D, 4C, S2, S3) were tested using Spearman’s corre-
lation. These tests were performed using the exact age (as opposed to the age group) of animals as
the independent variable. In other words, we measured trends across the individual animals rather
than their age groups.
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Supporting Text

Defining statistical optimality of an internal model
An internal model of visual stimuli incorporates assumptions about a set of visual features (any-
thing from low level oriented edges, through visual chunks of medium complexity, to high level
objects) that are relevant to describe images. To formalize such an internal model, two components
need to be defined: the likelihood of features, P(input|features, parameters,model) describing the
probability with which any given input image can be expected to arise from a particular com-
bination of features (thereby implicitly defining the “meaning” of these features), and the prior
distribution of features, P(features|parameters,model), describing the probability with which any
particular combination of features can be expected to occur. Based on these, the posterior distri-
bution describing the probability that any given combination of features may have given rise to a
particular input can be computed by Bayes’ rule:

P(features|input, parameters,model) ∝
∝ P(input|features, parameters,model) P(features|parameters,model)

(Eq. S38)

For such a statistical model to be optimal, two conditions must be fulfilled. (1) Inferences
about features in an image must be expressed as posterior distributions for optimal decision making
and learning (S11). (2) The posterior distribution has to be consistent with the true features that
generated the input. In order to achieve this latter goal, it is important that the parameters of
the model, that the above formulation made explicit‡, are adapted to the statistical properties of
the input data according to a statistically well-founded criterion. A standard criterion is that the
parameters should be such that their likelihood, P(input|parameters,model) (not to be confused
with the likelihood of features described above), is maximised:

parametersML = argmax
parameters

P(input|parameters,model) . (Eq. S39)

The likelihood of the parameters can be computed as

P(input|parameters,model) =

=

∫
P(input|features, parameters,model) P(features|parameters,model) d features .

(Eq. S40)

As we explain in the next section, testing the maximum likelihood criterion of optimality in
neural data is challenging. However, it is easy to see that maximizing the likelihood of parameters
is equivalent to minimizing the KL divergence between the true distribution of inputs, P∗(input),
and the distribution of inputs predicted by the model with its parameters (S4):

parametersML = argmin
parameters

KL[P∗(input) ‖ P(input|parameters,model)] (Eq. S41)

‡For simplicity, we dropped the parameters from the notation in the main text.
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The minimal possible value of the KL divergence is zero, and for a model that attains this minimum
the KL divergence between the average posterior and the prior over features will also be zero:

KL[P∗(input) ‖ P(input|parameters,model)] = 0⇒

⇒ KL

[∫
P(features|input, parameters,model) P∗(input) d input ‖ P(features|parameters,model)

]
= 0

(Eq. S42)

This motivated the use of the latter KL divergence as a benchmark of the optimality of statistical
models (S12, S13), and this is the measure we also adopted in our study (Eq. 1 of the main text)
because we could relate it directly to neural data.§

Identifying the hallmarks of statistical optimality in neural activity
Identifying neural correlates of statistical optimality in cortical activity has proven to be challeng-
ing mainly because basic aspects of internal representations in the cortex are unknown. Therefore,
the problem has been addressed by indirect approaches that start from specific assumptions about
the precise nature (parametric form) of the internal model and search for neural correlates based
on these assumptions.

For example, one dominant indirect approach widely employed in low-level vision is based on
a class of internal models working on the assumption that retinal images are linear combinations
of underlying visual features (S14, S15). In this case, the parameters of the underlying statistical
model determine the linear features that the model uses to describe images, and so the optimality of
the model can be measured by the likelihood of its parameters (as in Eq. S40): the probability with
which the linear combinations of features result in natural images. Consequently, the statistical
optimality of the internal model encoded in the primary visual cortex (V1) is typically assessed
in this approach by comparing receptive fields in V1 to the set of visual features with maximal
likelihood, as required by Eq. S39 (S7, S13, S14, S16, S17).

There are two shortcomings of the indirect approach demonstrated in the example above. First,
asserting statistical optimality remains conditional on the specific assumptions about the para-
metric form of the internal model, which are typically hard to validate. In the above case, the
assumption about the linear combination of visual features contradicts the strong non-linear in-
teractions between visual objects due to occlusion and other effects. Even in models where the
specific assumption about the linear combination of features was relaxed (S18), other assumptions
(parametric forms for the model) needed to be made, e.g. that features were sparse (S14–S17) or
slowly changing (S19, S20). Confirming the validity of these assumptions proved to be fraught
with theoretical and experimental difficulties (S10, S21, S22). Moreover, many of these models
did not represent full posterior distributions over features, and so it is unclear how well the param-
eters that their optimization algorithms found were truly maximising the likelihood as required by
Eq. S39 (S23). The second shortcoming of these indirect approaches (regardless of whether or not

§We note that the direction of causation in Eq. S42 cannot be reversed, so the latter KL divergence (our benchmark
measure) being zero does not necessarily imply the former being zero (i.e., that the maximum likelihood values of
parameters have been found). A degenerate case in which our benchmark yields zero divergence is when the posterior
over features does not depend on the image (i.e., the model is decoupled from its inputs). Importantly, this was not the
case in our study, as demonstrated by Figs. 4 and S3.
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they assumed linear superposition of features) is that receptive fields alone provide an incomplete
description of neural responses (S24, S25) and therefore analyzing other aspects of neural activity
may be necessary for testing the statistical optimality of a model (S12, S26, S27).

The direct approach employed in our study circumvented both of these shortcomings. First, it
required making only minimal assumptions about the parametric form of the internal model (see
main text, and next section). Second, it used a benchmark of statistical optimality that also took
into account aspects of neural variability and, in general, higher order moments of response distri-
butions that had been ignored by previous approaches which only addressed the mean responses
of cells. Specifically, we compared the distribution of evoked neural activity patterns averaged
over a stimulus ensemble (aEA) to the distribution of spontaneous activity patterns, collected in
the dark (Fig. 1). This novel combination of analyses also made our approach distinct from other
approaches to neural data analysis (Table S2).

The relation between spontaneous activity and the prior distribution
In the main text we argued that neural activity is the result of the interaction between an internal
model of the environment, embedded in the underlying neural circuit, and the sensory input. This
interaction corresponds to the way the posterior distribution is computed from the likelihood and
the prior according to Bayes’ rule (Eq. S38). For high levels of brightness or contrast, this poste-
rior will be dominated by the likelihood of possible interpretations of the input, but as brightness
or contrast decreases, the internal model will need to rely more heavily on the prior of the inter-
nal model, and so spontaneous activity in darkness will be dominated by this prior distribution
(Fig. 1A). In the following, we provide a formal basis for this intuitive argument by showing that
in efficient natural image models the posterior distribution in darkness reduces to the prior distri-
bution, in a way consistent with experimental observations in behavioral and electrophysiological
studies (S11).

The key insight is that an efficient model of images should be able to represent a uniformly
dark stimulus with a very simple description. Since such a description would require fixing only a
small number of variables in the representation, the rest of the variables would be constrained only
by their prior expectations, and would thus be free to match the prior. This effect is a special case
of explaining away (S28).

This general idea can be illustrated with a toy model of natural images (S11). In the model,
each input image, y, is represented as a linear superposition of a set of basic, oriented features, wi

(for simplicity, we will consider only two features in the following), with variables xi representing
the (continuous) local contrast or luminance level at which each feature is present. In addition,
the model has a global contrast (or luminance) variable, b. The model is defined through prior
distributions over these feature values, P(x1, x2) and P(b), and the likelihood of features:

y|x1, x2, b ∼ Normal
(
b · (w1x1 +w2x2), σ

2
yI
)

(Eq. S43)

where I is the identity matrix, thus formalizing the notion that the image is a linear combination
of local features with contrast levels x1 and x2 scaled by the global contrast level b, with additive
(zero-mean) Gaussian pixel noise.

When presented with an image, the goal of inference in this model is to simultaneously infer the
local contrast levels of the linear features and the global contrast level, i.e., the posterior distribution
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over all the variables:
P(x1, x2, b|y) (Eq. S44)

A change in global contrast will affect only b, while the posterior distribution over feature-encoding
variables will remain largely unaffected (Fig 1A, central panel). This is consistent with the luminance-
invariant behavior that has been observed in perceptual (S29) and electrophysiological studies
(S30, S31). When the input is a uniform dark stimulus, the global contrast feature is inferred
to be tightly distributed around 0. The zero contrast level explains the whole content of the image,
and so the posterior distribution over the linear features is unconstrained by the likelihood and free
to match the prior (Fig. 1A, right panel).

More formally, the posterior distribution of the global contrast level can be written as

P(b|y = 0) ∝ P(b)

∫
P(y = 0|x1, x2, b) P(x1, x2) dx1 dx2

= P(b)

∫
exp

[
− 1

2πσ2y
‖b · (w1x1 +w2x2)‖2

]
P(x1, x2) dx1 dx2

(Eq. S45)

It is easy to see that for b = 0 the first term in the integral will be 1 for any setting of x1 and x2,
while for any other value of b it will quickly decay towards zero for most settings of x1 and x2. As
a consequence, the integral (the likelihood of b) will be much larger for b = 0 than for any other
value of b, resulting in a posterior that is heavily skewed towards zero and which thus can be well
approximated as P(b|y = 0) ≈ δ(b). Using this approximation to express the posterior over x1 and
x2 we obtain:

P(x1, x2|y = 0) =

∫
P(x1, x2|b,y = 0) P(b|y = 0) db =

∫
P(x1, x2|b,y = 0) δ(b) db

∝ P(x1, x2) P(y = 0|x1, x2, b = 0)︸ ︷︷ ︸
=1

= P(x1, x2) (Eq. S46)

and so the posterior over x1 and x2 reduces to the corresponding prior distribution. Note that the
global contrast level, b, influences only indirectly the uncertainty over x1 and x2: while in the
model global and local feature contrasts can be varied independently, for a given image an inferred
low global contrast level will influence the belief in the contrast of the individual local features
through the multiplicative interaction in Eq. S43.

The explaining away effect illustrated above is typical of a large class of natural image models.
The toy model proposed above is representative of models that take into account the co-variation
of visual features (S12, S17). Considering these common modulations leads to a more efficient
representation of images, since it removes redundant information (e.g., luminance) from the repre-
sentation of individual features. The same effect would also be obtained in models that represent
the presence and appearance of visual elements separately (S32), in which case the dark stimulus
would be explained away by the absence of all elements. Finally, image models that include oc-
clusion (S18) would explain dark images as one dark object occluding the rest of the scene. Even
though our example is a directed, causal model of images, this is not necessary for our argument.
Similar effects would be observed in an undirected model, as long as a uniform stimulus could be
explained away by a small subset of the variables.
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Supporting Figures
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Fig. S1: Baseline KL divergence between evoked and spontaneous activity. Comparing the
divergence between movie-evoked activity and spontaneous activity to the baseline divergence
between movie-evoked activity and itself. Divergences are computed by splitting the data into
two halves and averaging over all comparisons. For instance, for the baseline divergence between
movie-evoked activity with itself we split the neural responses into two halves, r(M)

1: 12
and r

(M)
1
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where r
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is movie-evoked neural activity between time bins t1 and t2, and computed
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)]
. Error bars represent s.e.m in all figures, significance

levels are ∗∗p < 0.01, otherwise p > 0.05 (m-test); see Methods for further details.
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Fig. S2: Sparseness of neural representations over development. Changes over development
of three measures of sparseness: activity sparseness (AS, red), population sparseness
(TRpopulation, blue), and lifetime sparseness (TRlifetime, green), as defined in Methods. All three
measures decreased significantly over development, both for movie-evoked activity (activity
sparseness: Spearman’s ρ = −0.79, P = 0.0004; population sparseness: ρ = −0.75, P = 0.001;
lifetime sparseness: ρ = −0.65, P = 0.009), and spontaneous activity (activity sparseness:
Spearman’s ρ = −0.61, P = 0.01; population sparseness:ρ = −0.78, P = 0.0006; lifetime
sparseness: ρ = −0.75, P = 0.001). Thus, neural activity distributions became less sparse as the
internal model adapted to natural image statistics (Fig. 2B in main text), in contrast to the trend
predicted by sparse coding models (S10). See Methods for details.
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Fig. S3: Modulation of neural activity by grating stimuli over development. For each animal
and channel we computed the average Fourier spectrum of neural response in 2-second windows.
We defined the modulation index as the ratio of the power at the temporal frequency of the
oscillation of the grating to the power at zero frequency, in order to normalize for changes in
average firing rate. We then averaged the modulation index across channels in each animal. The
histogram shows the average (± s.e.m.) modulation index in the four age groups. The modulation
index did not change significantly over age (Sperman’s ρ = −0.27, p=0.49), suggesting that
neurons were equally responsive to external stimuli at different stages of development. The two
panels on the right show two examples of neural activity on the 16 electrodes for a young animal
at age P29 (left) and an adult animal at age P136 (right) in response to a grating stimulus.
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Fig. S4: Kullback-Leibler divergence estimation and m-test validation. a, Percent error for
the estimation of the KL divergence between two high-dimensional, random distributions. For
each run, we drew two distributions over 216 states from a uniform Dirichlet prior, and measured
their true KL divergence. From each of the two distributions we then drew 750, 000 samples, from
which we estimated the KL divergence (see Methods). The data shown in the figure is taken over
197 runs. b–d Type II error was measured for t-test and model selection test (m-test) when the
probability of Type I error was fixed at 0.05. The error was computed over 50, 000 Monte Carlo
simulations where a given number of samples (x-axis) was drawn from two normal distributions,
the first with mean 0 and standard deviation 1, and the second with mean 1 and standard deviation
varying from 0.25 to 2.0 (colors from red to blue). b, Type II error in percent for the t-test. c, Type
II error in percent for the model selection test. d, Difference in Type II error between t-test and
model selection test. Positive numbers indicate lower error (greater statistical power) for the
m-test.
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Supporting Tables

age groups N Movie Noise Grating Dark

P29-30 3 3 3 2 3

P44-45 3 3 3 2 3

P83-92 4 3 4 1 4

P129-151 6 3 5 4 6

TOTAL 16 15 15 9 16

Table S1: Number of animals used in the study. Number of animals per age group (left), and
number of animals recorded in each condition (right).
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evoked activity

stimulus-dependent
P (r|y)

stimulus-averaged∫
P (r|y)P ∗(y) dy
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ity

ignored
“classical” neural coding
(e.g., Rieke et al., 1997 )
information transmission

Schneidman et al., 2006
error correction

analyzed
P (r)

Luczak et al., 2009
coding robustness

this paper
probabilistic inference

Table S2: Approaches to neural activity analysis. Our approach assesses the statistical
optimality of an internal model for probabilistic inference and therefore it is conceptually
different from standard approaches in neural coding that focus on the optimality of information
transmission in a neural circuit by quantifying how easily a stimulus, y can be recovered from the
evoked neural responses, r (S33, S34). To provide a statistical description of the mapping between
stimuli and EA responses, standard neural coding analyses focus on responses to individual
stimuli (left column). These approaches either compute the average stimulus eliciting a particular
EA pattern for constructing receptive fields by reverse correlation methods (S35), or characterize
the distribution of EA patterns in response to each individual stimuli, e.g. by computing its
average for constructing tuning curves (S36) or by computing higher order moments for
characterizing the roles of “noise” correlations in multi-neural responses (S37). In contrast, for
assessing the statistical optimality of an internal model, the average distribution of EA patterns
needs to be computed, where the average is taken over many individual stimuli sampled from a
particular stimulus ensemble, P ∗(y) (Fig. 1 in the main text). In addition, this distribution then
needs to be compared to the distribution of SA patterns (lower right). While averaged EA
distributions have been recently analysed to study the error correcting properties of EA patterns
(S38, upper right), SA has typically been excluded from such analyses. Recent analyses of SA
have been limited to comparing patterns of neural activity recorded during spontaneous activity
with those evoked by particular stimuli, finding similar structure and repeating motives (S39, S40,
lower left), but see also (S1).
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S40. Luczak, A., Barthó, P. & Harris, K.D. Spontaneous events outline the realm of possible
sensory responses in neocortical populations. Neuron 62, 413–25 (2009).

23




